A favard theorem for rational functions

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Favard theorem for rational functions with complex poles

Let {φn} be a sequence of rational functions with arbitrary complex poles, generated by a certain three-term recurrence relation. In this paper we show that under some mild conditions the rational functions φn form an orthonormal system with respect to a Hermitian positive-definite inner product.

متن کامل

Orthogonal rational functions with complex poles: The Favard theorem

Let {φn} be a sequence of rational functions with arbitrary complex poles, generated by a certain three-term recurrence relation. In this paper we show that under some mild conditions, the rational functions φn form an orthonormal system with respect to a Hermitian positive-definite inner product.

متن کامل

Favard theorem for reproducing kernels

Consider for n = 0, 1, . . . the nested spaces Ln of rational functions of degree n at most with given poles 1/αi, |αi| < 1, i = 1, . . . , n. Let L = ∪0 Ln. Given a finite positive measure μ on the unit circle, we associate with it an inner product on L by 〈f, g〉 = ∫ fgdμ. Suppose kn(z, w) is the reproducing kernel for Ln, i.e., 〈f(z), kn(z, w)〉 = f(w), for all f ∈ Ln, |w| < 1, then it is know...

متن کامل

Titchmarsh theorem for Jacobi Dini-Lipshitz functions

Our aim in this paper is to prove an analog of Younis's Theorem on the image under the Jacobi transform of a class functions satisfying a generalized Dini-Lipschitz condition in the space $mathrm{L}_{(alpha,beta)}^{p}(mathbb{R}^{+})$, $(1< pleq 2)$. It is a version of Titchmarsh's theorem on the description of the image under the Fourier transform of a class of functions satisfying the Dini-Lip...

متن کامل

A rational Chebyshev functions approach for Fredholm-Volterra integro-differential equations

The purpose of this study is to present an approximate numerical method for solving high order linear Fredholm-Volterra integro-differential equations in terms of rational Chebyshev functions under the mixed conditions. The method is based on the approximation by the truncated rational Chebyshev series. Finally, the effectiveness of the method is illustrated in several numerical examples. The p...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Mathematical Analysis and Applications

سال: 1989

ISSN: 0022-247X

DOI: 10.1016/0022-247x(89)90017-6